Part Number Hot Search : 
UN521M A105M K150E MAX4123 BCR553 HSBD234 SPX2937 IRFR2405
Product Description
Full Text Search
 

To Download AOD603L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AOD603 Complementary Enhancement Mode Field Effect Transistor
General Description
The AOD603 uses advanced trench technology MOSFETs to provide excellent R DS(ON) and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications. Standard Product AOD603 is Pb-free (meets ROHS & Sony 259 specifications). AOD603L is a Green Product ordering option. AOD603 and AOD603L are electrically identical.
TO-252 D-PAK
Features
n-channel p-channel -60V VDS (V) = 60V ID = 12A (V GS=10V) -12A (VGS=-10V) RDS(ON) RDS(ON) < 60m (VGS=10V) < 115m (VGS =- 10V) < 150m (VGS = -4.5V) < 85m (VGS=4.5V)
D2
D1
Top View Drain Connected to Tab
G2 S2
G1 S1
n-channel
S1 G1 D1/D2 G2 S2
p-channel
Absolute Maximum Ratings T A=25C unless otherwise noted Parameter Max n-channel Symbol VDS 60 Drain-Source Voltage VGS Gate-Source Voltage 20 Continuous Drain Current G Pulsed Drain Current Avalanche Current
C C C
Max p-channel -60 20 -12 -10 -30 -12 23 37.5 18.8 2.5 1.6 -55 to 175
Units V V A A mJ W W C
TC=25C TC=100C ID IDM IAR EAR PD PDSM TJ, TSTG TC=25C
12 12 30 12 23 20 10 2 1.3 -55 to 175
Repetitive avalanche energy L=0.1mH Power Dissipation Power Dissipation
B
TC=100C TA=25C TA=70C
A
Junction and Storage Temperature Range
Thermal Characteristics: n-channel and p-channel Parameter t 10s Maximum Junction-to-Ambient A Steady-State Maximum Junction-to-Ambient A Steady-State Maximum Junction-to-Case B A t 10s Maximum Junction-to-Ambient Steady-State Maximum Junction-to-Ambient A Steady-State Maximum Junction-to-Case B
Symbol RJA RJC RJA RJC
Device n-ch n-ch n-ch p-ch p-ch p-ch
Typ 17.4 50 4 16.7 40 2.5
Max 30 60 7.5 25 50 4
C/W C/W C/W C/W C/W C/W
Alpha & Omega Semiconductor, Ltd.
AOD603
N-Channel MOSFET Electrical Characteristics (TJ=25C unless otherwise noted) Parameter Symbol STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) RDS(ON) gFS VSD IS Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current Static Drain-Source On-Resistance VGS=4.5V, ID=6A Forward Transconductance VDS=5V, ID=12A IS=1A, VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current Conditions ID=10mA, VGS=0V VDS=48V, VGS=0V TJ=55C VDS=0V, VGS=20V VDS=VGS, ID=250A VGS=10V, VDS=5V VGS=10V, ID=12A TJ=125C 1 30 47 85 67 14 0.74 1 12 450 VGS=0V, VDS=30V, f=1MHz VGS=0V, VDS=0V, f=1MHz 61 27 1.35 7.5 VGS=10V, VDS=30V, ID=12A 3.8 1.2 1.9 4.2 VGS=10V, VDS=30V, RL=2.5, RGEN=3 IF=12A, dI/dt=100A/s 3.4 16 2 27.6 30 35 2 10 5 540 85 60 2.4 Min 60 1 5 100 3 Typ Max Units V A nA V A m m S V A pF pF pF nC nC nC nC ns ns ns ns ns nC
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time
Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=12A, dI/dt=100A/s
A: The value of R JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25C. The Power dissipation P DSM is based on R JA and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175C may be used if the PCB allows it. B. The power dissipation P D is based on T J(MAX)=175C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175C. D. The R JA is the sum of the thermal impedence from junction to case R JC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175C. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25C. The SOA curve provides a single pulse rating. Rev2: August 2005 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE
Alpha & Omega Semiconductor, Ltd.
AOD603
N-Channel MOSFET TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
30 25 20 ID (A) 15 10 5 0 0 1 2 3 4 5 VDS (Volts) Fig 1: On-Region Characteristics 80 Normalized On-Resistance 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0 25 50 75 100 125 150 175 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+01 ID=12A 125C 1.0E+00 125C 1.0E-01 IS (A) 1.0E-02 1.0E-03 1.0E-04 4 6 8 10 1.0E-05 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics 25C VGS=4.5V,6A VGS=10V, 12A 7V 5V ID(A) 4.5V VGS=4V 3.5V 10 10V 6V 20 VDS=5V
15
125C 25C
5
0 2 2.5 3 3.5 4 4.5 5 VGS(Volts) Figure 2: Transfer Characteristics
70 RDS(ON) (m)
VGS=4.5V
60 VGS=10V 50
40 0 4 8 12 16 20 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage
160 140 RDS(ON) (m) 120 100 80 60 40 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage 25C
Alpha & Omega Semiconductor, Ltd.
AOD603
N-Channel MOSFET TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10 8 VGS (Volts) 6 4 2 0 0 2 4 6 8 Qg (nC) Figure 7: Gate-Charge Characteristics 100.0 200 10s 100s Power (W) 1ms 10ms 1.0 DC 160 120 80 40 0 0.0001 TJ(Max)=175C TA=25C VDS=30V ID=12A Capacitance (pF) 700 600 500 400 300 200 100 0 0 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 5 10 30 Coss Ciss
Crss
TJ(Max)=175C, TA=25C RDS(ON) limited
ID (Amps)
10.0
0.1 0.1 1 10 100 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10 ZJC Normalized Transient Thermal Resistance D=Ton/T TJ,PK=TC+PDM.ZJC.RJC RJC=7.5C/W
0.001
0.01
0.1
1
10
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD Ton T 10 100
0.01 0.00001
Single Pulse 0.0001 0.001 0.01 0.1 1
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
AOD603
N-Channel MOSFET TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
14 ID(A), Peak Avalanche Current Power Dissipation (W) 0.001 12 10 8 6 4 2 0 0.00001 25
tA =
L ID BV - V DD
20 15 10 5 0
TA=25C
0.0001
0
25
50
75
100
125
150
175
Time in avalanche, tA (s) Figure 12: Single Pulse Avalanche capability
TCASE (C) Figure 13: Power De-rating (Note B)
14 12 Current rating ID(A) 10
50 40 Power (W) 30 20 10 0 0.001 TA=25C
8 6 4 2 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 14: Current De-rating (Note B) 10
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
ZJA Normalized Transient Thermal Resistance
1
D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=60C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1 PD Single Pulse Ton 0.01 0.1 1 10 T 100 1000
0.01
0.001 0.00001
0.0001
0.001
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
AOD603
P-Channel MOSFET Electrical Characteristics (TJ=25C unless otherwise noted) Parameter Symbol STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) RDS(ON) gFS VSD IS Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current Static Drain-Source On-Resistance VGS=-4.5V, ID=-6A Forward Transconductance VDS=-5V, ID=-12A IS=-1A,VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current Conditions ID=-250A, VGS=0V VDS=-48V, VGS=0V TJ=55C VDS=0V, VGS=20V VDS=VGS ID=-250A VGS=-10V, VDS=-5V VGS=-10V, ID=-12A TJ=125C -1.5 -30 91 150 114 12.8 -0.76 -1 -12 987 VGS=0V, VDS=-30V, f=1MHz VGS=0V, VDS=0V, f=1MHz 114 46 7 15.8 VGS=-10V, VDS=-30V, ID=-12A 7.4 3 3.5 9 VGS=-10V, VDS=-30V, RL=2.5, RGEN=3 IF=-12A, dI/dt=100A/s 10 25 11 27.5 30 35 10 20 9 1185 150 115 -2.1 Min -60 -0.003 -1 -5 100 -3 Typ Max Units V A nA V A m m S V A pF pF pF nC nC nC nC ns ns ns ns ns nC
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg(10V) Total Gate Charge (10V) Qg(4.5V) Total Gate Charge (4.5V) Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=-12A, dI/dt=100A/s
A: The value of R qJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25C. The Power dissipation PDSM is based on R qJA and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175C. D. The R qJA is the sum of the thermal impedence from junction to case R qJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 ms pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175C. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25C. The SOA curve provides a single pulse rating. Rev2: August 2005 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE
Alpha & Omega Semiconductor, Ltd.
AOD603
P-Channel MOSFET Electrical Characteristics (TJ=25C unless otherwise noted)
30 25 20 -ID (A) -ID(A) -4.5V 15 10 5 0 0 1 2 3 4 5 -VDS (Volts) Fig 1: On-Region Characteristics 220 Normalized On-Resistance 200 180 RDS(ON) (m) 160 140 120 100 80 15 20 25 -ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 0 5 10 VGS=-10V VGS=-4.5V 2 1.8 1.6 1.4 1.2 1 0.8 0 25 50 75 100 125 150 175 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature VGS=-4.5V ID=-6A VGS=-10V ID=-12A -3.5V -3V 0 0 1 2 3 4 5 -VGS(Volts) Figure 2: Transfer Characteristics VGS=-4V -7V -10V 10 -6V -5V 8 6 125C 4 25C 2 VDS=-5V
300 ID=-12A 250 125C RDS(ON) (m) -IS (A) 200 150 100 50 2 4 6 8 10 -VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage
1.0E+01 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -VSD (Volts) Figure 6: Body-Diode Characteristics 125C
25C
25C
Alpha & Omega Semiconductor, Ltd.
AOD603
P-Channel MOSFET Electrical Characteristics (TJ=25C unless otherwise noted)
10 VDS=-30V ID=-12A A 1200 Ciss 8 1000 Capacitance (pF) 800 600 400 Coss 200 0 0 8 12 -Qg (nC) Figure 7: Gate-Charge Characteristics 4 16 0 15 20 25 -VDS (Volts) Figure 8: Capacitance Characteristics 5 10 30 Crss
-VGS (Volts)
6
4
2
0
100.0
TJ(Max)=175C, TA=25C 10s Power (W)
200 160 120 80 40 0 0.0001 TJ(Max)=175C TA=25C
-ID (Amps)
10.0
RDS(ON) limited
1ms
100s
10ms 1.0 DC
0.1 0.1 1 -VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10 ZJC Normalized Transient Thermal Resistance 10 100
0.001
0.01
0.1
1
10
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
D=Ton/T TJ,PK=TC+PDM.ZJC.RJC RJC=4C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD Ton Single Pulse
T
0.01 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
AOD603
P-Channel MOSFET Electrical Characteristics (TJ=25C unless otherwise noted)
14 -ID(A), Peak Avalanche Current 40
12
Power Dissipation (W)
tA =
L ID BV - VDD
30
10
20
8
TA=25C
10
6 0.00001
0 0.0001 0.001 0 25 50 75 100 125 150 175 TCASE (C) Figure 13: Power De-rating (Note B)
Time in avalanche, tA (s) Figure 12: Single Pulse Avalanche capability
14 12 Current rating -ID(A) 10 8 6 4 2 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 14: Current De-rating (Note B) 10 ZJA Normalized Transient Thermal Resistance Power (W)
60 50 40 30 20 10 0 0.001 TA=25C
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
1
D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=50C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1 PD Single Pulse Ton T 100 1000
0.01
0.001 0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.


▲Up To Search▲   

 
Price & Availability of AOD603L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X